
Resumé of mathematics for Chemistry A
If you have followed the Mathematics course in Part IA reasonably dili-

gently, most of the following material should be familiar. Some of it consists
of brief exercises (answers at the end) to illustrate the types of manipulation
that are needed, and if you can do all these without any difficulty you should
have no trouble with the maths in the rest of the course. You need to be fairly
proficient with this material, so that you can concentrate on the new ideas
in the course without having to struggle with the mathematics. If any of it is
unfamiliar or difficult for you, ask your supervisor to take you through it as
soon as possible.

1 Functions of a complex variable

exp[±iθ]≡ e±iθ = cosθ± i sinθ. (1.1)

(The notation means that we take either the top sign or the bottom sign
throughout.) Conversely

cosθ =
1
2

(eiθ + e−iθ), sinθ =
1
2i

(eiθ− e−iθ). (1.2)

1.1 Complex conjugate

The complex conjugate of any expression is constructed by replacing i by−i
throughout. An expression that is equal to its complex conjugate is said to
be real; one that is equal to minus its complex conjugate is imaginary. The
complex conjugate is usually denoted by an asterisk; thus z∗ is the complex
conjugate of z.

Exercise 1.1 If z = eiθ, show that zz∗ = 1.

Exercise 1.2 Use eq. (1.2) to express cos2 θ and sin2 θ in terms of cos2θ.

Exercise 1.3 What are the solutions of the equation z3 = 1?

2 Spherical polar coordinates
The definition of spherical polar coordinates and the relationship between
them and Cartesian coordinates are given in the Data Book. Although they
are available for consultation in the examination, you will find it helpful
to be familiar with these relationships, as we shall need to switch between
Cartesian and polar from time to time.

Exercise 2.1 (a) A point is at x = y = z = a in Cartesian coordinates. Find its posi-
tion in spherical polar coordinates.
(b) A point is at (r,θ,ϕ) in spherical polar coordinates. Find the position, in spher-
ical polars, of the point obtained by inversion through the origin. (In Cartesians,
inversion takes the point (x,y,z) to (−x,−y,−z).)
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3 Differentiation
Exercise 3.1 Differentiate with respect to x:

(a) sinx, (b) sin2 x, (c) exp(−x2).

Exercise 3.2 Evaluate

(a)
d2

dx2 exp(−x2), (b)
1
r2

d
dr

r2 d
dr

e−r, (c)
1

sinθ
d

dθ
sinθ

d
dθ

cosθ.

(In the more complicated expressions each differential operator applies to everything
to its right. Start at the right-hand end and work to the left.)

3.1 Chain Rule

If f is a function of g which is a function of x, then

d
dx

f (g(x)) =
dg
dx

d f
dg
. (3.3)

If f is a function of several variables u, v and w which are each functions of
x, y and z, then

∂ f
∂x

=
∂u
∂x

∂ f
∂u

+
∂v
∂x

∂ f
∂v

+
∂w
∂x

∂ f
∂w
. (3.4)

This most commonly arises when u, v and w are the spherical polar coordin-
ates r, θ and ϕ.

Exercise 3.3 If r =
√

x2 + y2 + z2, evaluate

(a)
d
dx

r (use (3.4) with u = x2 + y2 + z2, so that r =
√

u), (b)
d
dx

e−r.

4 Stationary points

At a maximum or minimum (a stationary point) of a function f (x), d f/dx =
0. For a function of several variables x1,x2, . . . , the condition for a stationary
point is

∂ f/∂x1 = ∂ f/∂x2 = · · ·= 0. (4.5)

Exercise 4.1 Find the values of r at which f (r) = r2 exp(−2r) has a maximum or
minimum.

Exercise 4.2 Find the maximum of f (r,θ) = r4 cos2 θexp(−r), where r and θ are
spherical polar coordinates.
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5 Integration
We only need definite integrals, almost always taken over the full range of
the variable.

Exercise 5.1 Evaluate

(a)

� 2π

0
sin2 ϕdϕ, (b)

� a

0
sin2 πx

a
dx.

5.1 Integration by parts�
b

a
udv =

[
uv
]b

a−

�
b

a
v du (5.6)

Exercise 5.2 Evaluate

(a)
� π

0
xsin xdx, (b)

� ∞

0
r2e−2r dr, (c)

� a

0
x2 sin2 πx

a
dx.

Exercise 5.3 Some of the more difficult integrals are tabulated in the Data Book.
Use the tabulated formulae to evaluate

(a)
� ∞

−∞
x2 exp

(
−km

h̄2 x2
)

dx, (b)
� π

0
cos2 θsin3 θdθ.

Exercise 5.4 Sometimes it isn’t necessary to evaluate an integral at all because
the negative parts cancel the positive parts. Sketch the integrands of the following
integrals and satisfy yourself that the integral is zero in each case.

(a)
� ∞

−∞
xe−ax2

dx, (b)
� π

0
sin2 θcos θdθ.

Exercise 5.5 Integrals involving spherical polar coordinates have to include the
volume element dV = r2 sin θdr dθdϕ. Leaving out the r2 sinθ factor is a very com-
mon source of error. Using spherical polar coordinates, evaluate

(a)
�

exp(−2r)dV, (b)
�

x2 exp(−r)dV.

Refer to the Data Book if you are uncertain about the range of integration.

6 Differential equations
6.1 Ordinary differential equations
Exercise 6.1 Solve for y:

(a)
d2y
dx2 =−m2y, (b)

dy
dx

=−xy

6.2 Partial differential equations
Exercise 6.2 If y(r,ϕ) satisfies the partial differential equation

1
r

∂
∂r

r
∂y
∂r

+
1
r2

∂2y
∂ϕ2 = 0,

show that a possible solution is y = R(r)exp(imϕ). Find the equation satisfied by
R(r) and find its solutions. (Hint: try R = rk.)
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7 Probability distributions
Some of you may not have met this topic at A level or in Part IA, so here is a
brief summary. If it’s unfamiliar you should probably refer to a textbook for
a more detailed account; if it’s familiar just read through it to remind your-
self of the main points, and do the exercises to check your understanding.

If a quantity x doesn’t always have the same value, but is different each
time it’s measured, its behaviour can usually be described by a probability
density P(x). Examples: height of a person chosen at random; length of a
vibrating chemical bond. P(x)dx is the probability that a measurement of x
yields a value between x and x + dx.

The probability that a particular measured value of x lies in the finite
range between a and b is � b

a P(x)dx. Since x must be somewhere (probability
1), the probability density has to satisfy � P(x)dx = 1, where the integral
sign without explicit limits means that we are to integrate over the full range
of x, which might be 0 to ∞, or−∞ to ∞, or some other range, depending on
the problem. (This notation must not be confused with the indefinite integral,
but it is useful in applications like quantum mechanics where the indefinite
integral doesn’t usually occur.)

The average or mean of a series of measurements is the sum of all of
them divided by the number of measurements. In a very long series of N
measurements (N→∞) values in the range x to x+dx occur NP(x)dx times,
so the mean is 〈x〉= (1/N) � x×NP(x)dx = � xP(x)dx.

In the same way, the average or expectation value of some function of x,
such as x2, is obtained by adding up the values of x2 and dividing by the total
number of measurements. In terms of the probability distribution this gives
〈x2〉= � x2P(x)dx. An important quantity is the variance, which is the mean
square deviation from the mean, that is the average value of

(
x−〈x〉

)2
. This

is

varx =

�
(
x−〈x〉

)2
P(x)dx

=

�
(
x2−2x〈x〉+ 〈x〉2

)
P(x)dx

= 〈x2〉−〈x〉2. (7.7)

In practice it is more convenient to work with the square root of the variance,
which is known as the standard deviation in probability theory, and as the
uncertainty in quantum mechanics:

σx = ∆x =
√

varx =
(
〈x2〉−〈x〉2

)1/2
. (7.8)

Exercise 7.1 If P(r) = 4r2 exp(−2r) (0≤ r < ∞), show that

(a)
�

P(r)dr = 1, (b) 〈r〉= 3/2, (c) 〈r2〉= 3, (d) ∆r =
√

3
4 .

(Remember that the integrals are in the data book.)
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Exercise 7.2 If P(J) = (1/Q)(2J +1)exp(−BJ(J +1)/kT ) and E(J) = BJ(J +1),
where B is a constant, then
(a) Find the value of Q for which � ∞

0 P(J)dJ = 1;
(b) Find 〈E〉.
(Hint: use the substitution u = J(J + 1).)

8 Determinants
The determinant of a 2×2 matrix is defined by

∣∣∣∣
A11 A12

A21 A22

∣∣∣∣= A11A22−A12A21. (8.9)

The determinant of a square n× n matrix with elements Ai j can be defined
recursively as follows:

det(A)≡

∣∣∣∣∣∣∣∣∣

A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
. . .

...
An1 An2 . . . Ann

∣∣∣∣∣∣∣∣∣

= A11

∣∣∣∣∣∣∣∣∣

A22 A23 . . . A2n

A32 A33 . . . A3n
...

...
. . .

...
An2 An3 . . . Ann

∣∣∣∣∣∣∣∣∣
−A12

∣∣∣∣∣∣∣∣∣

A21 A23 . . . A2n

A31 A33 . . . A3n
...

...
. . .

...
An1 An3 . . . Ann

∣∣∣∣∣∣∣∣∣

+ A13

∣∣∣∣∣∣∣∣∣

A21 A22 A24 . . . A2n

A31 A32 A34 . . . A3n
...

...
...

. . .
...

An1 An2 An4 . . . Ann

∣∣∣∣∣∣∣∣∣
−·· · . (8.10)

In this formula, each element of the first row is multiplied by the determinant
of an (n−1)×(n−1) matrix (the cofactor) obtained by crossing out the row
and column containing that element, and multiplying by (−1)i+ j, where i
and j label the row and column. Any row or column can be used — it doesn’t
have to be the first row.

This defines an n×n determinant in terms of smaller ones, and formally
we can repeat the process, eventually reaching 2×2 determinants where we
can use (8.9). Fortunately we shall only need to carry out this procedure in
practice for a 3×3 determinant:
∣∣∣∣∣∣

A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣
= A11

∣∣∣∣
A22 A23

A32 A33

∣∣∣∣−A12

∣∣∣∣
A21 A23

A31 A33

∣∣∣∣+ A13

∣∣∣∣
A21 A22

A31 A32

∣∣∣∣

= A11(A22A33−A23A32)−A12(A21A33−A23A31)

+ A13(A21A32−A22A31) (8.11)

The only other property that we need is that exchanging any two columns
of a determinant changes its sign. This can be seen immediately for (8.9),
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and with rather more effort for (8.10), but you do not need to be able to
prove it. It follows from this that a determinant with two identical columns,
or two identical rows, is zero, and also that any multiple of any row (column)
can be added to any other row (column) without affecting the value of the
determinant.

Exercise 8.1 Evaluate

(a)

∣∣∣∣∣∣

x 1 0
1 x 1
0 1 x

∣∣∣∣∣∣
, (b)

∣∣∣∣∣∣

x 1 1
1 x 1
1 1 x

∣∣∣∣∣∣
,

and in each case find the values of x that make the determinant zero.

9 Matrices
A reminder of some definitions. For a square n× n matrix A with elements
Ai j,

• An identity or unit matrix is a square matrix with every diagonal ele-
ment equal to 1 and the remaining elements zero. That is, Ai j = 1 if
i = j and 0 otherwise.

• The product AB of two matrices A and B is a matrix C whose elements
are

Ci j = ∑
k

AikBk j. (9.12)

That is, Ci j is the scalar product of the ith row of A with the jth column
of B.

• The inverse A−1 of an n×n matrix A is another n×n matrix such that
the product A−1A = I, where I is the n×n unit matrix.

• The transpose of a matrix A is a matrix AT whose elements are (AT )i j =
A ji.

• A symmetric matrix is a square matrix which is unchanged by reflec-
tion in its leading diagonal (top left to bottom right). That is, Ai j = A ji,
or AT = A.

• The Hermitian conjugate of a matrix A is a matrix A† whose elements
are (A†)i j = (A ji)

∗.

• The elements of a Hermitian matrix satisfy Ai j = A∗ji. That is, A = A†.

• A matrix is orthogonal if its inverse is equal to its transpose: A−1 =
AT .

• A matrix is unitary if its inverse is equal to its Hermitian conjugate:
A−1 = A†.
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• The trace of a matrix is the sum of its diagonal elements: trace(A) =

∑i Aii.

A column vector is an n×1 matrix, and a row vector is a 1×n matrix. The
transpose xT of a column vector is a row vector. Two vectors u and v are
said to be orthogonal if uT v = 0.

If a column vector x satisfies

Ax = λx (9.13)

it is said to be an eigenvector of the matrix A with eigenvalue λ. An n×
n symmetric or Hermitian matrix has n eigenvectors, which are mutually
orthogonal. The eigenvalues satisfy det(A−λI) = 0.

Exercise 9.1 Find the eigenvalues and eigenvectors of the matrices

(a)




0 1 0
1 0 1
0 1 0


 , (b)




0 1 0
1 1 1
0 1 0


 .

10 Permutations and Combinations
The number of possible arrangements of N distinguishable objects (the num-
ber of permutations) is N!. The number of distinct ways of selecting k ob-
jects from N, if the order of the k selected objects does not matter (the num-
ber of combinations of k objects from N) is N!/k!(N− k)!.

If N is very large, Stirling’s approximation is useful:

lnN!≈ N lnN−N. (10.14)

The error in this approximation is of the order of lnN, which is negligible
compared with N when N is of the order of 1023.

Exercise 10.1 Write down the probability of winning the lottery (i.e. of guessing
correctly six different numbers between 1 and 49). Evaluate it (a) exactly, (b) using
Stirling’s approximation for the large factorials.

Exercise 10.2 If A =−kT ln(qN/N!), use Stirling’s approximation to express it in
the form A =−NkT ln(qe/N).

Exercise 10.3 Find the number of ways of putting Q indistinguishable balls in N
distinguishable boxes.

Hint: imagine the boxes arranged in order from 1 on the left to N on the right,
separated by partitions, and with balls in some of the boxes:

1 2 3 4 5 . . . N−1 N
• • • •

How many ways are there of arranging the N−1 (indistinguishable) partitions and
the Q indistinguishable balls?
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11 Dimensional Analysis
The magnitude of a physical quantity is expressed as a multiple of some
unit, which in turn can be expressed in terms of basic units of length L,
mass M, time T , electric current J, temperature K, amount of substance
N and luminous intensity I. The dimensions of a physical quantity spe-
cify the power to which each of these basic units occurs. Thus velocity
might be measured in units of m s−1, but its dimensions are LT−1 — length
over time — whatever system of units is used. Square brackets are con-
ventionally used to denote the dimensions of a quantity, so we can write
[velocity] = LT−1. The dimensions of other quantities can be found by ana-
lysing expressions for them. For example the dimensions of energy can be
derived by considering the expression 1

2 mv2 for kinetic energy, from which
we see that [energy] = [mass]×[velocity]2 = ML2T−2. A quantity for which
all the factors of L, M, T , etc. cancel out is said to be dimensionless, and has
the same value in any system of units.

Every term in an equation must have the same dimensions. The argument
of a mathematical function such as log or exp must be dimensionless, so for
instance log(V ) is not a legitimate expression if V is a volume, but log(V/V0)
might be.

Exercise 11.1 Find the dimensions of the following expressions:

(a)

(
8kBT
πm

)1/2

(b)

(
2πmkBT

h2

)3/2

V (c) − e4m
8h̄2n2(4πε0)2

where the symbols have the following meanings:

kB is Boltzmann’s constant;
T is a temperature;
m is a mass;
e is the elementary charge (proton charge);
h is Planck’s constant, and h̄ = h/2π;
V is a volume;
n is an integer;
ε0 is the permittivity of the vacuum.

Hint: For (c), note that [charge2/(4πε0×distance)] =[energy].

Exercise 11.2 Which of the following are dimensionally legitimate expressions?

(a) exp
(
− E

kBT

)
(b) exp

(
− 1

2

√
km
h̄

x2
)

(c) exp
(
− n2h2

8ml2kBT

)
,

where the symbols have the same meanings as above, and also:

E is an energy inkJmol−1;
k is a force constant;
x and l are lengths.
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Answers
1.1 If z = eiϕ, then zz∗ = eiϕe−iϕ = e0 = 1.

1.2

cos2 θ = 1
4(eiθ + e−iθ)2 = 1

4(e2iθ + e−2iθ + 2) = 1
2(1 + cos2θ)

sin2 θ =
1

(2i)2 (eiθ− e−iθ)2 =− 1
4(e2iθ + e−2iθ−2) = 1

2(1− cos2θ)

1.3 Since exp(2πni) = 1 for any integer n, the possible solutions of z3 = 1 are
exp(2πni/3), for any n. However n + 3 gives the same solution as n, so there are 3
distinct solutions, corresponding to n = 0, 1, and 2.

2.1 (a) r =
√

x2 + y2 + z2 = a
√

3; θ = arccos(z/r) = arccos
√

1
3 = 54.74◦;

ϕ = arctan(y/x) = arctan 1 = 45◦.
(b) r =

√
x2 + y2 + z2, so after inversion we have r′ = r, and cos θ′ = z′/r′ =

−z/r = −cosθ, so that θ′ = π− θ. (This is the only possible value for θ because
0< θ< π.) For ϕ, we have tanϕ′ = y′/x′ = (−y)/(−x) = tanϕ, so ϕ′ = ϕ or ϕ+π.
From geometrical considerations the latter is the correct answer.

3.1

(a) cos x, (b) 2sin xcos x, (c) −2xexp(−x2).

3.2

(a)
d2

dx2 exp(−x2) =
d
dx

(
−2xexp(−x2)

)
= (4x2−2)exp(−x2);

(b)
1
r2

d
dr

r2 d
dr

e−r =
1
r2

d
dr

r2(−e−r) =− 1
r2 (2re−r− r2e−r) =

(
1− 2

r

)
e−r;

(c)
1

sinθ
d

dθ
sinθ

d
dθ

cos θ =− 1
sinθ

d
dθ

sin2 θ =− 1
sinθ

2sin θcos θ =−2cosθ.

3.3 Writing u = r2 = x2 + y2 + z2,

(a)
d
dx

r =
d
dx

√
u =

du
dx

1
2 u−1/2 =

x
r
,

(b)
d
dx

e−r =
dr
dx

d
dr

e−r =−x
r

e−r.

4.1

d
dr

(
r2 exp(−2r)

)
= (2r−2r2)exp(−2r),

which is zero when r = 0, r = 1 or r = ∞. By inspection, r = 1 is a maximum.

4.2

d
dr

(
r4 cos2 θexp(−r)

)
= (4r3− r4)exp(−r)cos2 θ,

d
dθ
(
r4 cos2 θexp(−r)

)
=−2cosθsin θr4 exp(−r).
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Both derivatives are zero for any θ when r = 0 or r = ∞, or for any r when θ = 1
2 π.

In all these cases the function is zero. The only other possibilities are r = 4, θ = 0
or π; at these points the function has its maximum value.

5.1

(a)
� 2π

0
sin2 ϕdϕ =

� 2π

0

1
2(1− cos2ϕ)dϕ =

[
1
2(ϕ− 1

2 sin2ϕ)
]2π

0
= π.

(b)

� a

0
sin2 πx

a
dx =

a
π

� π

0
sin2 ϕdϕ = a/2,

using the substitution ϕ = πx/a.

5.2

(a)
� π

0
xsin xdx =

[
−xcos x

]π

0
+

� π

0
cos xdx = π +

[
sin x

]π

0
= π;

(b)
� ∞

0
r2e−2r dr =

[
r2e−2r

−2

]∞

0
+ 1

2

� ∞

0
2re−2r dr

= 0 +

[
re−2r

−2

]∞

0
+ 1

2

� ∞

0
e−2r dr = 0 + 1

2

[
e−2r

−2

]∞

0
= 1

4 ;

(c)
� a

0
x2 sin2 πx

a
dx = 1

2

� a

0
x2
(

1− cos
2πx
a

)
dx

=

[
x3

6

]a

0
− 1

2

� 2π

0

a3

8π3 ϕ2 cos ϕdϕ (setting ϕ = 2πx/a)

=
a3

6
− a3

16π3

{[
ϕ2 sinϕ

]2π

0
−

� 2π

0
2ϕsin ϕdϕ

}

=
a3

6
+

a3

8π3

{[
ϕ(−cosϕ)

]2π

0
+

� 2π

0
cos ϕdϕ

}

= a3
(

1
6
− 1

4π2

)
.

5.3

(a)

√
π

2
h̄3

(km)3/2
; (b) 4/15.

5.4 (a) The function f (x) = xexp(− 1
2 x2) is odd; that is, f (−x) = − f (x). Con-

sequently the contribution to the integral from −x cancels the contribution from
+x.

(b) Rather than sketching the complete function, it is easier and more helpful
to sketch the separate factors cosx (solid curve) and sin2 x (dashed curve). The two
halves of the integral cancel because cos(π− x) =−cosx.

(a) (b)

PSfrag replacements

1.0

0

−1.0

0 π/2 π
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5.5

(a)
�

exp(−2r)dV =
� ∞

r=0
r2 exp(−2r)dr

� π

θ=0
sinθdθ

� 2π

ϕ=0
dϕ

= (2!/23)×
[
−cosθ

]π

0
×2π = π;

(b)
�

x2 exp(−r)dV =
�

r2 sin2 θcos2 ϕexp(−r)r2 sinθdr dθdϕ

= 4!×2× 2
3 ×π = 32π

using the formulae in the Data Book. An alternative for (b) is to note that x, y and z
are equivalent, so that�

x2 exp(−r)dV = 1
3

�
r2 exp(−r)4πr2 dr = 1

3 ×4π×4! = 32π,

since we can use the volume element 4πr2 dr for a purely radial integral.

6.1 (a) Try y = ekx. This leads to k2 = −m2, or k = ±im, so the solutions are
e±imx, or equivalently (see eq. (1.1)) sin(mx) or cos(mx).

(b) Rearrange the equation into the form

dy
y

=−xdx,

and integrate to get lny =− 1
2 x2 + c, i.e. y = Aexp(− 1

2 x2).

6.2 Substituting y = R(r)exp(imϕ) into the equation gives

1
r

∂
∂r

r
∂R
∂r
− m2

r2 R = 0

as the equation to be satisfied by R. Substituting R = rk into this shows that it is
a solution provided that k2 = m2, i.e., k = ±m. Thus the solutions are y(r,ϕ) =
r±m exp imϕ.

(The equation is Laplace’s equation in 2-dimensional polar coordinates. If the
solutions are to be single-valued, i.e., y(r,ϕ) = y(r,ϕ + 2π), then m must be an
integer.)

7.2 Using the substitution u = J(J + 1), so that du = (2J + 1)dJ,

(a) Q =
� ∞

0
(2J + 1)exp

(
−BJ(J + 1)

kT

)
dJ =

� ∞

0
exp

(
−Bu

kT

)
du =

kT
B
,

(b) 〈E〉=
1
Q

� ∞

0
(2J + 1)BJ(J + 1)

(
−BJ(J + 1)

kT

)
dJ

=
B

kT

� ∞

0
Buexp

(
−Bu

kT

)
du =

B
kT
×B× k2T 2

B2 = kT.
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8.1

(a)

∣∣∣∣∣∣

x 1 0
1 x 1
0 1 x

∣∣∣∣∣∣
= x(x2−1)−1× x = x3−2x = 0 when x = 0 or x =±

√
2.

(b)

∣∣∣∣∣∣

x 1 1
1 x 1
1 1 x

∣∣∣∣∣∣
= x(x2−1)−1× (x−1) + 1× (1− x) = x3−3x + 2

= (x−1)2(x + 2).

9.1 (a) The equation for the eigenvalues is det(A−λI) = 0, i.e.,

∣∣∣∣∣∣

−λ 1 0
1 −λ 1
0 1 −λ

∣∣∣∣∣∣
=−λ3 + 2λ,

(see ex. 8.1), so λ = 0 or ±
√

2. For λ =
√

2 we have



−
√

2 1 0
1 −

√
2 1

0 1 −
√

2






x1

x2

x3


= 0,

That is,

−
√

2x1 + x2 = 0,

x1−
√

2x2 + x3 = 0,

x2−
√

2x3 = 0,

so if x3 = c we find x2 = c
√

2 and x1 = c. For the eigenvector to be normalized
(x2

1 + x2
2 + x2

3 = 1), we need c = 1
2 . Finding the remaining eigenvectors in the same

way gives

λ =
√

2, x = 1
2




1√
2

1


 , λ = 0, x =

√
1
2




1
0
−1


 , λ =−

√
2, x = 1

2



−1√

2
−1


 .

(b)

λ =−1, x =
√

1
2




1
0
−1


 , λ = 0, x =

√
1
6




1
2
1


 , λ = 2, x =

√
1
3




1
−1
1


 .

10.1

(a) 6!(49−6)!/49! = 6!/(49.48.47.46.45.44) = 1/13983816;

(b) 6!/exp((49ln 49−49)− (43ln 43−43)) = 1/13102825.
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10.2

A =−kT ln(qN/N!)≈−kT (N lnq− (N lnN−N))

=−NkT(ln
q
N

+ 1) =−NkT(ln
qe
N

),

since lne = 1.

10.3 We have N + Q− 1 objects (balls and partitions). The number of ways of
choosing Q of these to be balls is (N + Q−1)!/(N−1)!Q!.

11.1 (a) LT−1 (velocity). kBT is an energy (dimensions ML2T−2) so kBT/m has
dimensions L2T−2.
(b) Dimensionless. kBT is an energy as before; the dimensions of h are [energy]
×[time], i.e., ML2T−1. Consequently the expression inside the parentheses has di-
mensions L−2.
(c) ML2T−2 (energy). It is simplest to note that e2/(4πε0) has dimensions of
[energy]×[length], while h̄ has dimensions of [energy]×[time]. Cancelling out the
[energy] factors leaves ML2T−2.

11.2 (a) is invalid: the dimensions of E are ML2T−2N−1, and those of kB are
ML2T−2K−1, so the whole expression has dimensions of N−1. (Probably the kB

should be R, the gas constant — but note that the tabulated value is in Jmol−1 K−1

while E is inkJmol−1, so a factor of 1000 must be included. Dimensional analysis
doesn’t help with numerical factors like this.)

(b) and (c) are dimensionally correct.

A.J.S. June 1997
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